
TNM114 - Artificial Intelligence for Interactive Media
Oktober 23, 2024

Zone-Sensitive Self Driving Bus
Anna Granberg1, Erik Dahlström2, Filip Hamrelius 3

Abstract

This project presents the development of a self-driving bus capable of navigating a track with speed-sensitive
zones using the NeuroEvolution of Augmenting Topologies (NEAT) library within an environment developed with
Python and the library PyGame. The NEAT algorithm is driven by a fitness function to evaluate and reproduce
effective generations. This project employs a fitness function similar to those used in Q-learning approaches,
but with NEAT enabling the dynamic evolution of both the structure and weights of neural networks, allowing
the bus to adapt to complex environmental conditions. The bus is trained to obey speed regulations in school
zones, avoid collisions, and pass through checkpoints. The implementation focuses on optimizing the reward
function to balance various goals such as speed, distance travelled, and safety. This work demonstrates the
potential of NEAT for autonomous driving systems, though challenges remain, including the balancing of the
reward function and inefficiencies in training. In conclusion, the implementation successfully solves the task, with
the bus navigating the track and slowing down in school zones. However, a drawback is that the bus also drives
slowly on non-school-straight-zone sections of the track.

Source code: https://github.com/hamreliusfilip/SelfDrivingBus

Video: https://youtu.be/9WJq2jezN80

Authors
1Media Technology Student at Linköping University, anngr950@student.liu.se
2Media Technology Student at Linköping University, erida600@student.liu.se
3Media Technology Student at Linköping University, filha243@student.liu.se

Keywords: Neural Network — Neuro Evolution– Fitness – Rewards — NEAT

Contents

1 Introduction 1

2 Theory 2

3 Method 2

3.1 NEAT . 2
Input Layer • Hidden Layer • Output Layer

3.2 Environment . 3
3.3 Sensors . 3
3.4 Reward function . 4
3.5 Training . 4

Genome • Generations • Balancing Exploration and Exploitation

4 Result 4

5 Discussion 5

5.1 Choice of algorithm . 5
5.2 Optimizing the reward function 5
5.3 Training . 5
5.4 Similar Projects . 5

6 Conclusion 6

References 6

1. Introduction
Methods for developing simple self-navigating agents in simu-
lations or games have seen significant advancements in recent
years. Machine learning libraries have gained considerable
traction and are becoming increasingly accessible. Imple-
menting these methods using a forward-driving vehicle is a
straightforward and common approach. These methods offer
substantial flexibility, providing a wide range of possibilities
for what can be achieved.

The most common solution for this problem is to use some
kind of reinforcement learning, often opting for Q-learning
or Deep Q-learning. Since this has been done a lot of times
for similar environments as this one, this project has opted
for a different solution - this project has also tried to make
the environment more advanced than simply driving around
a track as fast as possible. This report will discuss the imple-
mentation and workflow of a self driving agent in the form of
a bus, capable of navigating a simple track with specific speed
zones.

https://github.com/hamreliusfilip/Self_Driving_Bus
https://youtu.be/9WJq2jezN80

Zone-Sensitive Self Driving Bus — 2/6

2. Theory

This project is based around the Python library: NeuroEvo-
lution of Augmenting Topologies, also called NEAT. An im-
plementation with NEAT falls under the broader category of
genetic algorithms, specifically focusing on evolving neural
networks. In short an algorithm that evolves both the structure
and weights of neural networks by encoding them as genomes,
which are subject to crossover, mutation, and selection based
on their fitness in solving a given task [1].

To evolve a solution to a problem, the user provides a fit-
ness function that assigns a score to each genome, reflecting
its ability to solve the problem. Higher scores indicate better
performance. The algorithm runs for a specified number of
generations, where each generation is created by reproducing
and mutating the fittest individuals from the previous gen-
eration. Through reproduction and mutation, genomes can
become more complex by adding nodes and connections. The
algorithm stops either when the set number of generations is
reached, or when a genome exceeds a specified fitness thresh-
old. NEAT begins with simple networks, typically without
any hidden layers or with a minimal predefined structure. Dur-
ing the training process, NEAT can dynamically add hidden
layers and nodes as needed. This allows it to evolve the net-
work topology, making it more complex over generations, as
the task demands [2].

The only influence the implementation has over the specifics
of the neural network is based on a configuration file. The file
can be specified with a number of predetermined parameters
for the network to base its implementation around. There are
a lot of potential for optimizing and changing the implementa-
tion with the configuration files. This implementation focused
on a few parameters: population size, number of inputs, num-
ber of outputs, number of hidden layers, initial connections
and amount of genomes brought between generations [2].

The fitness model has to be implemented from scratch de-
pending on the environment and task at hand. For this project
the fitness function is based on rewards that depend on how
the bus interacts with the environment. Fundamentally, the
bus receives negative rewards for crashing into a wall, pos-
itive rewards relative to the distance travelled, and positive
rewards for passing a checkpoint. The bus also interacts with
different zones in the environment, such as a slow zone: a
school zone. In these zones, the bus is expected to drive
slowly and is penalized for driving too fast while within the
zone. The inspiration for this kind of rewards structure comes
from Q-learning within the Reinforcement Learning category
of Machine Learning. In these cases is very common to use
basic inputs for a reward structure [2] [3].

3. Method
The following chapter will present the project methodology
and implementation of the self-driving bus and its correspond-
ing neural-network, defining what actions to perform, how the
reward function was defined and how it was trained.

3.1 NEAT
A central part of NEAT is how it structures and manages the
networks, which can be divided into three main components:
input layer, hidden layer, and output layer.

3.1.1 Input Layer
The input layer is the first layer in the neural network. It
serves as a receiver for the information that the network needs
to make its calculations and decisions [4]. In our project, we
have defined a specific number of inputs, which represent
various sensor readings or states that the bus needs to perceive.
These include:

• 5 sensors with distance vectors from the car to the track
boundaries.

• A Boolean variable to track whether the bus is in a
school zone or not.

Each neuron in the input layer is connected to a specific sensor
or parameter and sends these values on to the hidden layer for
further processing.

3.1.2 Hidden Layer
NEAT allows for hidden layers to grow and evolve over time,
providing great flexibility and adaptability. Hidden layers can
contain a varying number of neurons, and each neuron in this
layer can receive signals from both the input layer and other
neurons in the hidden layer [5]. These neurons use activation
functions, such as sigmoid and tanh, to process the input
signals and create new signals that represent more abstract
and complex patterns. Hidden layers are crucial for capturing
the non-linear relationships in the data, enabling the bus to
learn more advanced behaviours over time.

3.1.3 Output Layer
The output layer is the last layer in the neural network and
is responsible for producing the actions that the bus should
perform based on the information processed in the input and
hidden layers. Each neuron in the output layer corresponds to
a specific action or decision, and they are:

• Speed (Accelerate or brake).

• Steering (Turn left or right).

The outputs from these neurons are interpreted and used to
control the bus movements in the simulation. The outputs can
be either continuous values like speed or discrete decisions
such as which direction the bus should turn. All of this is
illustrated in the following Figure 1

Zone-Sensitive Self Driving Bus — 3/6

Figure 1. Input- and output-layer.

3.2 Environment
The environment that the bus interacts with is constructed
in Python with the library PyGame. A common library that
comes with all tools needed to handle graphics, game loops,
interactions and interactive applications in general.

The track that the bus drives on is a simple PNG created
in a drawing program. It consists of simple turns, left and
right, in order for the bus to navigate around the circuit. The
bus is never allowed to cross the boundaries of the track other-
wise the bus will reset at the start/finish line. In order to make
sure that the bus knows where the in- and outside lines are at
all time from the png track, the program gathers this informa-
tion from using the function Canny. The Canny algorithm is
used as an image processing technique for detecting edges in
an image. It operates in several stages to identify the points
where there is a significant change in the intensity of pixels,
which correspond to the tracks boundaries in this case. These
represent the key boundaries that define where the vehicle
can or cannot travel on the track, allowing further steps like
collision detection. The end result from this algorithm can be
shown in Figure 2.

Figure 2. Resulting image of track after using Canny
algorithm.

After this we created the tracks checkpoints and school zones,
which play a critical role in shaping the simulation’s dynamics.
The checkpoints are placed manually at specific coordinates.

These don’t directly interact with the neural network, but
they serve an important purpose. They influence the fitness
of each generation as we evolve the system. On the other
hand, school zones are more sophisticated. They are also
manually placed, but they do interact directly with the neural
network, creating an environment where the bus must adapt
its behaviour, ensuring it recognizes and responds to these
zones. I.e the variable for school zone is an input to the neural
network. The checkpoints can be seen i Figure 3. The school
zones do not have a graphical representation, they are instead
defined with an array to assist the checkpoints, meaning each
checkpoint has a boolean value of 0 or 1, school zone after
the checkpoint or not.

Figure 3. Track with checkpoints used.

3.3 Sensors
In order for the bus to navigate around the circuit it uses the
sensors that were mentioned in section 3.1.1. The sensor
integration is crucial for enabling the bus to perceive its envi-
ronment and make intelligent decisions. The bus is equipped
with a radar system consisting of five radar rays positioned
and distributed across a range of 180 degrees, from -90 to 90
degrees relative to the bus’s forward direction, allowing the
bus to detect obstacles in front, as well as to its left and right.

Each radar ray has a defined length, which determines the
maximum distance it can measure. When a radar ray is cast,
it checks for intersections with the environment’s barriers.
This is done using a function that calculates the nearest in-
tersection between the ray and the polygonal contours rep-
resenting obstacles or road boundaries. The bus continually
updates the distances detected by these rays using the method
get radar distances(), which computes the distance from the
bus to the nearest barrier for each ray.

The output of the radar system is a vector of radar distances,
which are passed as inputs to the NEAT neural network. These
distances serve as the bus’s primary means of perceiving its
surroundings [6]. For instance, if a barrier is detected close
to the bus by one or more rays, the neural network should
generate an output that prompts the bus to adjust its trajectory,
such as steering away from the obstacle or slowing down.

Zone-Sensitive Self Driving Bus — 4/6

Conversely, if no obstacles are detected, the bus may decide
to accelerate forward. An illustration of the sensors can be
seen in Figure 4.

Figure 4. Sensors used from the bus.

3.4 Reward function
The reward function plays a critical role in shaping the be-
haviour of the agent. It evaluates the bus’s performance by
assigning a score based on various aspects of its navigation,
encouraging efficient movement, obstacle avoidance, and com-
pliance with contextual rules e.g. speed limits in school zones.
The NEAT algorithm uses this reward function to evolve neu-
ral networks, selecting those that demonstrate improved per-
formance over generations. The total fitness score is the cumu-
lative sum of these rewards, computed at each time step. The
fitness score is derived from several key factors, including:

• Distance Moved: The bus receives rewards based on
the distance travelled, encouraging forward progress.

• Speed Regulation in School Zones: Penalties are ap-
plied when the bus exceeds the speed limit in designated
school zones, while rewards are given for maintaining
appropriate speeds.

• Collision Avoidance: Penalties are incurred when the
bus collides with or comes too close to obstacles, pro-
moting safer navigation.

• Checkpoint Rewards: Reaching predefined check-
points provides rewards, encouraging the agent to fol-
low the correct route and complete laps.

• Survival Reward: A small constant reward is given
for continuous movement, motivating the bus to avoid
stalling.

This score reflects the overall effectiveness of the agent in
navigating the environment, balancing progress, safety, and
rule adherence. The general form of the equation can be
represented as follows:

Ftotal =
T

∑
t=1

(dt + st + zt + ct + pt) (1)

• dt : Distance covered at time step t

• st : Survival at time step t

• zt : School zone penalty or reward at time step t

• ct : Collision penalty at time step t

• pt : Checkpoint reward at time step t

3.5 Training
The training process is centred around two key parameters:
genomes and generations. Which govern how the control
strategies evolve over time. These parameters can be adjusted
by modifying the population size, which determines how many
genomes are evaluated within each generation, and by con-
trolling the number of generations or evolutionary cycles that
the system undergoes.

3.5.1 Genome
A larger population introduces greater diversity in each gener-
ation, encouraging the bus to explore a wide range of possible
routes and try new strategies for navigation. However, it also
requires more computational resources. On the other hand,
a smaller population focuses the bus’s exploration on fewer
paths, potentially leading to more refined and efficient routes,
but limiting the variety of strategies tested [7].

3.5.2 Generations
Running more generations gives the algorithm more opportu-
nities to evolve better strategies. As the bus completes each
generation, its performance is assessed through the fitness eval-
uation process, which scores each genome based on how well
it navigates the environment. The best-performing genomes
are selected to reproduce, passing on successful traits to the
next generation. This continuous process helps the system
learn and improve its navigation capabilities over time [7].

3.5.3 Balancing Exploration and Exploitation
Our NEAT algorithm uses genetic variation mutation and
crossover to create new genomes each generation, striking
a balance between exploration (trying new strategies) and
exploitation (refining successful ones) [4]. While running
more generations can lead to better optimization, there’s a risk
of over-fitting where the system becomes too specialized for
current used training environment and less adaptable to new
situations.

4. Result
This chapter presents the final parameters and fitness score
from a completed lap, along with a visual representation of
the simulation’s outcome.

Zone-Sensitive Self Driving Bus — 5/6

The final training session did not have a strict limit; it was
initially set to 200 generations, which would continue for a
couple of hours. However, the training was ultimately termi-
nated when a sufficient result was achieved, specifically when
the model completed the track and slowed down at the correct
parts of the map.

The final run of the bus can be viewed with the link in the
beginning of the report. The specifics of that run can be
viewed in Table 1 below. The final environment and bus can
be viewed in Figure 5.

Generations Genomes
per Gener-
ation

Successful
genomes

Training
Time
(hours)

27 30 808 1

Table 1. Training data for the self-driving bus project,
including final score and training time.

Figure 5. Final view of the environment.

5. Discussion
The following chapter presents a reflection of the results and
ideas of how to improve the performance of the agent.

5.1 Choice of algorithm
Using NEAT in the early stages of the project made it easy
to get the system up and running, particularly in refining how
the bus was driving and setting up the environment. However,
the real challenge emerged during the training phase, where
fine-tuning the system became more complex. The primary
difficulty was in adjusting the configuration parameters for
NEAT. With so many parameters that can be modified, each
influencing the others, optimizing the system became a te-
dious task. Initially, an exclusion method was used to test
individual variables and their effects. Unfortunately, this ap-
proach proved unreliable, as the complex interactions between
the variables meant that trial and error was insufficient for

producing optimal results.

A better approach, instead of using NEAT, could have been
to start with a more conventional learning method, such as
deep neural networks or reinforcement learning algorithms
like Deep Q-Learning (DQN). These methods allow for more
straightforward control over the architecture and tuning pro-
cess. Alternatively, model-based methods could have been
explored, where a model of the environment is built to simu-
late different outcomes, allowing for more efficient planning
and decision-making. This would have reduced the complex-
ity and unpredictability associated with NEAT.

5.2 Optimizing the reward function
The reward function presented some challenges, and the fi-
nal version was developed through a trial-and-error approach.
As previously discussed, the final reward function included
rewards for passing checkpoints and maintaining the correct
speed within designated zones. The bus was penalized for
crashing into walls or driving at the wrong speed in school
zones.

In the end, the car learned to drive as intended, except for
one issue: it tended to drive slowly on straight sections of
the track that did not include a school zone. It is possible the
neural network learned to drive slowly on straight parts and
faster in curves. This was anticipated during the implemen-
tation, and a countermeasure was introduced by rewarding
the car for driving fast outside of school zones, not just for
driving slowly. However, it is possible the reward system
was unbalanced, which could have caused this behaviour. No
solution was found for the slow driving on the straight parts
of the track, but the sole purpose of the bus was achieved -
driving slow in school zones and faster outside.

5.3 Training
The training phase of the projects was similar to optimizing
the reward function, a lot of trial and error. After some mod-
ification the training cycle would start over, which lead to
some dead time while waiting for it to complete. This was not
ideal and most of the time the modifications didn’t improve
the result.

When training the reward function took everything in to con-
sideration i.e. learning to turn, speeding correctly in the dif-
ferent zones and avoiding collision. This could have been
improved if the training sessions was split up into different
part and built up neural network with previous training ses-
sions. As a result issues with the system could have been
quicker since working in sections.

5.4 Similar Projects
During this project, extensive research was conducted to find
similar projects. Many of them used NEAT and genetic al-
gorithms to train simple agents in 2D games, such as games

Zone-Sensitive Self Driving Bus — 6/6

where the character jumps up and down. Some projects in-
volving self-driving cars were also found, but they typically
featured less complex environments. While it is certainly pos-
sible to introduce more complex environments, this method
may not be ideal. As discussed earlier, relying on a fitness
function based on basic rewards works well for simple tasks
where right and wrong are clear-cut. However, using a fitness
function and reward structure in an environment with many
nuances of right and wrong becomes cumbersome. The re-
wards can interfere with each other, and the fitness score may
never converge.

A preferred solution or method could involve combining dif-
ferent approaches. While a genetic algorithm might work well
for simple survival tasks, other machine learning algorithms
may be better suited for handling specific rules. A possible
solution to this would have been to do the setup for a neural
network ourself or use a library which lets the user have more
control. Similar projects have used CARLA, TensorFlow,
PyTorch all which would have been good contenders.

6. Conclusion
In conclusion, the project successfully demonstrated the im-
plementation of a self-driving bus using NEAT to navigate a
track with speed- zones. The project combined key concepts
of genetic algorithms and neural network training, enabling
the bus to dynamically adjust its behaviour based on envi-
ronment conditions. While the bus achieved its primary goal
some challenges were encountered. Particularity with opti-
mizing the reward function and improving performance in
certain track sections.

Despite these issues the results show the potential of using
NEAT algorithms for self-driving application, with room for
further refinement through more focused training strategies
and reward function adjustments. As for future work, this
could involve more segmented training phases or deeper ex-
ploration into balancing speed and accuracy to address the
slower performances in the straight sections. Overall, the
project provides a strong foundation for developing naviga-
tions systems using NEAT.

References
[1] Pierangelo Dellacqua. Genetic algorithms, 2024. Lec-

ture 11, Linköpngs University, September 2024, Artificial
Intelligence for Interactive Media, TNM114.

[2] CodeReclaimers. Neat overview — NEAT-Python docu-
mentation, 2024. Accessed: 2024-10-15.

[3] Pierangelo Dellacqua. Reinforcement learning, 2024. Lec-
ture 9, Linköpngs University, September 2024, Artificial
Intelligence for Interactive Media, TNM114.

[4] Robert MacWha. Evolving ais using a neat algorithm,
2021.

[5] Austin Osborne. Science: Neuroevolution is neat!, 2018.
Accessed: 2024-10-15.

[6] Marios Skevofylakas. Deep reinforcement learning using
unity ml- agents — part ii, 2021. Accessed: 2024-10-16.

[7] Trevor Burton-McCreadie. The neat algorithm: Evolving
neural networks, 2024. Accessed: 2024-10-23.

	Introduction
	Theory
	Method
	NEAT
	Input Layer
	Hidden Layer
	Output Layer

	Environment
	Sensors
	Reward function
	Training
	Genome
	Generations
	Balancing Exploration and Exploitation

	Result
	Discussion
	Choice of algorithm
	Optimizing the reward function
	Training
	Similar Projects

	Conclusion
	References

