
Rocket Simulation

Erik Dahlström, erida600
Filip Malm-Bägén, filma379
Filip Hamrelius, filha243
Oliver Lundin, olilu316

March 14, 2023

Contents

List of Figures ii

1 Introduction 1

1.1 Introduction . 1

1.2 Delimitations . 1

1.3 Run Simulation . 1

1.3.1 MATLAB . 1

1.3.2 JavaScript . 2

2 Rocket Model 3

2.1 Mathematical Model . 3

2.2 Numerical Method Implementation . 6

2.3 Animation Implementation . 7

2.3.1 MATLAB . 7

2.3.2 JavaScript . 7

3 Result 8

3.1 MATLAB and Numerical Solver . 8

3.2 JavaScript . 9

4 Summary 10

4.1 Discussion . 10

4.2 Conclusion . 10

Bibliography 11

A Functions, variables and equations 12

A.1 Constants . 12

i

List of Figures

2.1 Spherical Coordinate System . 3

2.2 The forces acting on the rocket . 4

3.1 ODE45 . 8

3.2 RK4 . 8

3.3 Quantization error: ODE45 vs RK4 . 9

3.4 The final rocket simulation . 9

ii

Chapter 1

Introduction

In this chapter the project is introduced and a description of how to run the simulation is
provided.

1.1 Introduction

This report goes through the process of developing and implementing a fundamental rocket
simulation. The goal is to simulate the rocket in real time with as realistic parameters as
possible, such as the force of drag, the shifting of thrust and the different stages of the rocket.
The rocket which is to be simulated is Spacex’s Falcon 9 rocket. The first simulation will be
done in MATLAB. When this has been managed the group will move on to demonstrate it
using JavaScript.

1.2 Delimitations

A rocket simulation is a complicated subject which takes countless of parameters into consid-
eration. The project does therefore not have usual delimitations, but focuses on the selected
parameters in addition to a movement in a 3D space. The simulation depends on the density of
the air, the thrust of the rocket, the loss of mass through time and through the different stages
of the rocket, the decrease of gravitational pull and the drag force on the rocket.

This project does not consider wind, weather, humidity, fluid dynamics for the fuel, axial drag
coefficient, side force coefficient, launch site, etcetera.

1.3 Run Simulation

The following paragraphs describes how one should pursue to run both the MATLAB code and
the JavaScript application locally.

1.3.1 MATLAB

Version 2019 or higher is required in order to run the simulation in MATLAB. The code can be
cloned from Rocket-MATLAB. Run the m-file sim.m to run the simulation. Run the MLX-file:

1

https://github.com/olvard/Rocket

1.3. RUN SIMULATION CHAPTER 1. INTRODUCTION

sim.mlx to see the numerical result, that is, only the velocity and position over time. It is
recommended to have at least 8 GB of RAM to be able to run the simulation smoothly.

1.3.2 JavaScript

To run the JavaScript simulation, node.js run-time environment must be installed. The code
can be cloned using git from rocket-simulation. The 3D package Three.js must be installed at
the project directory in order to start the simulation. Simply write

npm i n s t a l l th ree

to configure the simulation and run

npm run dev

to start the simulation on your machine.

The simulation will also run directly in the web browser by simply clicking here.

2

https://github.com/Filipbagen/rocket-simulation
https://filipbagen.github.io/rocket-simulation/

Chapter 2

Rocket Model

In this chapter the system, model, numerical implementation and animation implementation is
described.

2.1 Mathematical Model

The initial description of the system was derived in three dimensions, meaning a spherical
coordinate system was needed. The three characteristics used by the system are the radial
distance from the origin r, the angle θ measured from the positive z-axis, and the angle φ
measured from the positive x-axis in the xy-plane. A graphical representation of the spherical
coordinate system can be viewed in figure 2.1.

Figure 2.1: Spherical Coordinate System
Wikimedia, 2019

A mathematical description of the motion of the rocket is required in order to simulate it. The
final equation is derived from Newton’s Second Law of Motion.

F (t) = m(t) · a(t) (2.1)

3

https://commons.wikimedia.org/wiki/File:3D_Spherical.svg

2.1. MATHEMATICAL MODEL CHAPTER 2. ROCKET MODEL

Figure 2.2: The forces acting on the rocket
Nasa, 2021

Thereafter the different directions of the force were taken into consideration. All of the forces
acting on the rocket can be seen in figure 2.2.

Fthrust(p(h))− Fdrag(ρ(p(h), T (h), h)−m(t) · g(h) = m(t) · a(t) (2.2)

Equation 2.2 describes how the forces acts on the rocket in one dimension where

Fthrust(p(h)) = M · Ve + (Pe − p(h)) · Ae (2.3)

and

Fdrag(ρ(p(h), T (h), h), v) =
ρv2CdA

2
(2.4)

M represents the mass flow rate, Ve is the velocity of exhaust, p(h) is the atmospheric pressure,
Pe is the exhaust pressure and Ae is the area of exhaust, ρ(p, T, h) is the air density, v is the
velocity of the rocket, Cd is the drag coefficient of the rocket and A is the reference area of the
rocket. The air density ρ is found using

ρ(p(h), T (h), h) =
p(h)

0.2869 · (T (h) + 273.1)
(2.5)

where

4

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.grc.nasa.gov%2Fwww%2Fk-12%2Frocket%2Frktfor.html&psig=AOvVaw10VB4A-u2KtExkiOQQoyJF&ust=1678881562045000&source=images&cd=vfe&ved=0CA0QjRxqFwoTCIi-p6uv2_0CFQAAAAAdAAAAABAD

2.1. MATHEMATICAL MODEL CHAPTER 2. ROCKET MODEL

p(h), T (h) =



T (h) = 15.04− 0.00649 · h
p(h) = 101 · T (h)·273.1

288.08

5.256
if h < 11000 (Troposphere)

T (h) = −56.46

p(h) = 22.65 · e1.73−0.000157·h if 11000 < h < 25000 (Lower Stratosphere)

T (h) = −131.21 + 0.00299 · h
p(h) = 2.488 · T (h)·273.1

216.6

−11.388
if h > 25000 (Upper Stratosphere)

(2.6)

where T (h) represents the temperature in Celsius. The gravitational force on the rocket is found
using

g(h) = G
R

(R + h)2
(2.7)

where h is the altitude of the rocket, G is the standard gravitational acceleration and R is the
radius of the earth. The mass of the rocket, m(t), is calculated by

m(t) =

{
mR1 +mP +mf (t) if mf (t) > 0

mR2 +mP if mf (t) = 0
(2.8)

where mR1 and mR2 represents the first stage rocket mass and the second stage rocket mass
respectively. mP represents the payload and mf (t) represents the fuel left on the rocket which
can be described using

mf (t) = m0 − br · t (2.9)

wherem0 is the initial mass of the fuel, br is the rockets burn rate and t is the time. Equation 2.2
describes the motion of the rocket solely along the z axis, due to the inclusive of gravity. This
can be fixed by splitting the equation into three different components, where each component
describes each dimension.

Ftrustx(p(h))− Fdragx(ρ(p(h), T (h), h) = m(t) · ax(t)

Ftrusty(p(h))− Fdragy(ρ(p(h), T (h), h) = m(t) · ay(t)

Ftrustz(p(h))− Fdragz(ρ(p(h), T (h), h)−m(t) · g(h) = m(t) · az(t)

(2.10)

Thereafter spherical coordinates had to be implemented in order for the model to be simulated
in three dimensions.

Fthrustx(p(h)) · sin(θ) · cos(φ)− Fdragx(ρ(p(h), T (h), h) = m(t) · ax(t)

Fthrusty(p(h)) · sin(θ) · sin(φ)− Fdragy(ρ(p(h), T (h), h) = m(t) · ay(t)

Fthrustz(p(h)) · cos(θ)− Fdragz(ρ(p(h), T (h), h)−m(t) · g(h) = m(t) · az(t)

(2.11)

5

2.2. NUMERICAL METHOD IMPLEMENTATION CHAPTER 2. ROCKET MODEL

Finally, the acceleration is factored out in order to describe the rockets acceleration.

ax(t) =
Fthrustx(p(h)) · sin(θ) · cos(φ)− Fdragx(ρ(p(h), T (h), h)

m(t)

ay(t) =
Fthrusty(p(h)) · sin(θ) · sin(φ)− Fdragy(ρ(p(h), T (h), h)

m(t)

az(t) =
Fthrustz(p(h)) · cos(θ)− Fdragz(ρ(p(h), T (h), h)−m(t) · g(h)

m(t)

(2.12)

Equation 2.12 gives the final equation which describes the acceleration of the rocket. The
constants used in the equations are revealed in A.1.

2.2 Numerical Method Implementation

The model was first investigated on MATLAB’s integrated ODE solver, ODE45, during the test-
ing stage. ODE45 is an iterative solver in turn based on Euler approximations. The JavaScript
simulation uses the numerical method Runge-Kutta order 4, RK4. The fourth-order Runge-
Kutta method works by using several k values which can be determined by iterating a set and
carrying on from the previous point while partially extracting a slope at each step. The last
stage determines the next point by averaging the results of the other phases. See equation 2.13.

tn+1 = tn + h

k1 = f(yn)

k2 = f(yn + h
k1
2
)

k3 = f(yn + h
k2
2
)

k4 = f(ynh3)

yn+1 = y +
1

6
(k1 + 2k2 + 2k3 + k4)h

(2.13)

The Runge-Kutta 4 function works by taking the current position and velocity of the rocket in
every dimension and outputs the next position and velocity in every dimension of the rocket.
Thus, the function takes an 1 by 6 array as an input and gives an 1 by 6 array as an output.
RK4 allowed the equation to be solved in one iteration for each time step. Using only a Euler
approximation the solver would have to be called 3 times for each value. Therefore RK4 helped
with simplicity.

The final model, developed in JavaScript, uses an implemented version of RK4 unlike the
MATLAB implementation.

6

2.3. ANIMATION IMPLEMENTATION CHAPTER 2. ROCKET MODEL

Pseudocode 1 Runge Kutta order 4 - JavaScript : Implementation

Input: dxyz - array of current position and velocity, dt - seconds since last frame loaded
Output: dxyz+1 - array of the following position and velocity

k1 = rocketEquation(dxyz)
k2 = rocketEquation(dxyz + k1 · dt

2
)

k3 = rocketEquation(dxyz + k2 · dt
2
)

k4 = rocketEquation(dxyz + k3 · dt)

dxyz+1 = dxyz +
1
6
(k1 + 2k2 + 2k3 + k4) · dt

2.3 Animation Implementation

The following section describes how the model is simulated on the computer, both using MAT-
LAB and by simulating in real time using JavaScript.

2.3.1 MATLAB

To animate the rocket trajectory in MATLAB, a nine grid subplot window was used. The
calculations themselves were not time dependent and were therefore calculated as quickly as
possible. To represent an actual trajectory the plots were instead animated after the calculations
were made using for loops to plot each discrete data point, and in turn mimic the change over
time.

2.3.2 JavaScript

To animate the rocket in JavaScript a third party library called Three.js was used. The library
uses WebGL in order to run 3D graphics in the browser [1]. The library was used to run
the simulation using 3D models and in a 3D environment. The simulation runs in real-time,
meaning one second in the simulation reflects one second in real life. This is in contrast with
the MATLAB simulation which runs the simulations as fast as the computer can calculate. The
simulation runs in real-time by calling the RK4-function for each frame and using the time it
takes for each frame to run as the step size.

Beyond the necessary components acting on the rocket that were made in Three.js, the 3D
model of the landing station that is animated in Three.js was made in Blender. The object was
exported as a glb-file in order to showcase it in the same way as the rocket when using the web
browser.

Pseudocode 2 JavaScript: Simulation Loop

while true do
updateRocketPosition(dt)
render(scene, camera)

7

Chapter 3

Result

This chapter showcases the result found by the MATLAB implementation regarding numerical
solvers aswell as the JavaScript version and its graphical implementation. The values used in
the simulation can be found in the Appendix, A.1

3.1 MATLAB and Numerical Solver

The MATLAB testing and proof of concept solved the differential equations using MATLAB
ODE45 solver. The final implementation in JavaScript used RK4 as its solver. Since the equa-
tions are rather elementary, only a small difference was found between the two methods. Figure
3.1 shows the simulation running for the first 100 seconds with ODE45. Figure 3.2 shows the
same simulation with RK4. Both simulations ran for 100 seconds and the angles were set to
zero.

Figure 3.1: ODE45 Figure 3.2: RK4

Figure 3.3 shows the quantization error between RK4 and ODE45, that is the difference between
the results of the simulations above. The error is calculated on the z-axis taking position
and velocity into account. The error was plotted as the absolute value on a logarithmic scale
proving that our RK4 implementation was sufficient enough compared too the proof of concept
completed with ODE45.

8

3.2. JAVASCRIPT CHAPTER 3. RESULT

Figure 3.3: Quantization error: ODE45 vs RK4

3.2 JavaScript

Figure 3.4 shows the view of the final graphical representation of the JavaScript implementation.
The window is a website running the simulation live. The view offers the user to change the
angles theta θ and phi φ interactively during the simulation. The same applies to the thrust.
The user interface also displays the current velocity asewll as the altitude and the fuel left. On
the right hand side the user can pause, start or restart the simulation.

In the simulation, it looks like the rocket in in space. However the calculations and simulation
is constructed in order for the rocket to start at the surface of the earth. The group never
imported a model of the earth, thus giving the impression that the rocket takes off in space.

Figure 3.4: The final rocket simulation

9

Chapter 4

Summary

This chapter discusses the results found in both the MATLAB and JavaScript implementation.

4.1 Discussion

The simulation implemented in MATLAB gave concise and effective results, but was obviously
lacking in the graphical aspect. Plots and animations were used to get a graphical representa-
tion. The time step is however not represented by real time, thus did not give the simulation
sought after. By using a predetermined solver during the MATLAB phase it facilitated the
debugging of the remaining parts. This allowed the group to focus on the model itself and not
the numerical solver.

With the proof of concept done in MATLAB, the implementation could be moved to JavaScript.
The JavaScript implementation uses a a self-developed RK4 instead of the ODE45. Since ODE45
uses a combination of RK4 and RK5, the self-developed RK4 gave similar results as ODE45
in MATLAB. This can also be seen in the quantization error between the two methods, which
is near negligible. It should be noted that the lack of difference probably also depends on the
rather simple differential equations and that the tests were done only with shorter time spans.
It is highly likely that ODE45 outperforms RK4 when it comes to more advanced differential
equations running for a longer amount of time.

In the JavaScript implementation the simulation loop takes real time into consideration, mean-
ing one second of simulation would equal one second in the real world. Besides the time aspect
and individual ODE solvers, the physical implementation in JavaScript and in MATLAB are
identical. The most challenging part of the implementation was to successfully make the simu-
lation run in real time. Since the concept was not tested in MATLAB it had to be developed
directly in JavaScript from scratch. The real time rendering was implemented by setting the
delta time, time it takes to run each frame, as the step size in the RK4 calculations.

4.2 Conclusion

In conclusion the rocket performed as sought taking air, mass, fuel and gravity into considera-
tion. The goal to simulate the rocket in a real time loop with 3D graphics could be constructed
by using JavaScript. The implementation was quite challenging and frankly impossible to do
in MATLAB.

10

Bibliography

[1] Three.js, Threejs Documentation, fetched: 2023-02-23
threejs.org

[2] Ideal rocket equation, Equation Documentation, fetched: 2023-02-23
Nasa

[3] Air pressure, Equation Documentation, fetched: 2023-02-23
Nasa

[4] Gravity, Equation Documentation, fetched: 2023-03-02
The Grainger College of Engineering

[5] Rocket Aerodynamics, Equation Documentation, fetched: 2023-03-02
Nasa

11

https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
https://www.grc.nasa.gov/www/k-12/rocket/rktpow.html
https://www.grc.nasa.gov/www/k-12/rocket/atmosmet.html
https://van.physics.illinois.edu/ask/listing/64061
https://www.grc.nasa.gov/www/k-12/rocket/rktaero.html#:~:text=We%20can%20also%20think%20of,velocity%20and%20pressure%20are%20changed.

Appendix A

Functions, variables and equations

In this appendix the constants used in the project can be found. The values in the table reflects
the real values of Spacex’s Falcon 9 rocket.

A.1 Constants

Mass flow rate, M 2100 kg/s
Velocity of Exhaust, Ve 3000 m/s
Exhaust Pressure, Pe 0.7 Pa
Exit Area, Ae 0.7 m
Drag Coefficient, Cd 0.6
Initial mass, m0 395,700 kg
Burn rate, br 1451.496 kg/s
Gravity at sea level, G 9.82 m/s2

Earth’s mean radius, R 6 371 km
First stage rocket mass, mR1 25 600 kg
Second stage rocket mass, mR2 3900 kg
Payload mass, mP 22 800 kg
Initial fuel mass, m0 395 700 kg
Burn rate, br 1451.496 kg/s

12

	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Delimitations
	1.3 Run Simulation
	1.3.1 MATLAB
	1.3.2 JavaScript

	2 Rocket Model
	2.1 Mathematical Model
	2.2 Numerical Method Implementation
	2.3 Animation Implementation
	2.3.1 MATLAB
	2.3.2 JavaScript

	3 Result
	3.1 MATLAB and Numerical Solver
	3.2 JavaScript

	4 Summary
	4.1 Discussion
	4.2 Conclusion

	Bibliography
	A Functions, variables and equations
	A.1 Constants

