
Sentiment Analysis 
on Political Biased 
News

Anna Granberg  
Filip Hamrelius

Support Vector Machine  
from scratch with Python



Sentiment analysis involves examining text to decide whether the expressed emotional 
tone within the message is positive, negative, or neutral. The method can also be used 
to examine other sentiments, in our case; Political bias.  

Sentiment analysis in the context of political biased news aims to assessing the tone of 
articles to determine the attitude and opinions presented in the text. Political bias 
means that the source expresses sentiments that align with a particular political stance, 
influencing the way they present and frame specific information. 

Using sentiment analysis we can shed light on the otherwise hidden meaning and 
information in the news and to an extent classify entire news outlets depending on their 
political agenda.  

This project aims to try out different methods for political bias, especially in the realm 
of support vector machines and feature extraction. 

Introduction - Sentiment Analysis



Ch. 1 Research Question
Aim & Background

T he aim for this projects research 
questions lies within evaluating the 
implementation and understanding 

support vector machines. The particular area 
within political bias was not chosen to dictate 
the research questions.  

1. Can a support vector machine be 
implemented in a sufficient way without 
predefined libraries?  

2. If so, how do the implemented SVM 
compare to the predefined one provided by 
the sklearn library?  

3. How does one choose the right document 
embedding method for feature extraction?



Ch. 2 Data
The Dataset

The dataset used is 
constructed of 6000 news 
articles with predefined 
political bias. The articles are 
labelled as either left, neutral 
or right bias. For the 
implementation we split the 
dataset into two, 75% training 
and 25% testing. The dataset 
was relatively well balanced 
and by shuffling before 
splitting we get a reasonable 
good balance. [1]

6000 news articles 

Left (0), neutral (1) or right (2)

25% Testing & 75% Training



Ch. 3 Processing
Cleaning the dataset

Before utilizing the dataset, we 
preprocessed it by removing stop 
words, punctuations, URL’s and 
HTML syntax. Since all news articles 
are written in Macedonian, the stop 
words needed to be imported as a 
distinct dataset.[1] 

1. Remove HTML syntax 

2. Drop URL’s  

3. Remove punctuations & other 
symbols  

4. Remove stop words 



Ch. 3 Processing
Learning document embeddings

PV-DBoW (Distributed Bag of Words) 

The model ignores the context words in a document and 
tries to predict the target words (or a set of words) based 
solely on the document's representation. It treats each 
document as a bag of words and learns a fixed-size vector 
representation for each document. [4]

PV-DM (Distributed Memory)  

The model takes into account the context words as well as 
the document itself. It tries to predict the target words by 
considering both the document's representation and the 
context words. This allows the model to capture the overall 
meaning of the document in addition to the individual 
word meanings. [4]

After the cleaning process, the dataset needed to be vectorized and tokenized to map the document embeddings. This 
resulted in a dataset containing 1000+ vectors, each with a length of 300, accompanied by a complementary dataset with 
labels: 0, 1, and 2. "Learning document embeddings" refers to the process of representing documents as vectors in a 
continuous vector space. The idea is to capture the semantic meaning, relationships and context of the entire documents in a 
dense vector, making it suitable for various natural language processing tasks, and in this case classifying the data with among 
others the SVM. [1]

During this project both methods were implemented in a 
attempt to evaluate which one is better suited for sentiment 
analysis and its correlation with the use of SVM.

Both models were imported 
with the Gensim library using 
their Doc2Vec class. 



Ch. 3 Processing
Finished Dataset

Orignal dataset:  

6000 articles with a respective label; left, 
neutral, right

Processed Training dataset:  

4500 vectors with a size of 300 tokens 
each representing one article. A 
complementary set with the labels; 0,1,2

Processed Test Dataset:  

1500 vectors with a size of 300 tokens 
each representing one article. With a key 
set containing the labels; 0, 1, 2

0

1

2

20%

50%

30%

25% Test 75% Training



Ch. 4 Modeling
SVM Implementation without Libraries
SVM using a basic gradient descent 
approach with hinge loss and L2 
regularization 

The gradient descent optimizes the SVM 
iteratively, the method to adjusts the parameters 
to find the optimal values that result in the best 
classification.  

The hinge loss is a function that penalized 
misclassifications and encourages correct 
classifications. This can be done since SVM is a 
supervised learning method, meaning we use the 
labels during the learning process. The goal is to 
maximize the margin between the hyperplane 
and the nearest data point of each class.  

The L2 regularization adds a penalty based on the 
sum of all parameters squared and adds them to 
the loss function. This helps prevent overfitting by 
discouraging complex models with large 
parameter values. [3].

class SVM: 
     
    def __init__(self, learning_rate=0.01, lambda_param=0.01, n_iters=10): 
        
        self.lr = learning_rate  # Learning rate for gradient descent 
        self.lambda_param = lambda_param  # Regularization parameter 
        self.n_iters = n_iters  # Number of iterations for training 
        self.w = None  # Weight vector 
        self.b = None  # Bias term 

    def fit(self, X, y): 
         
        n_samples, n_features = X.shape  # Number of samples and features 
        self.w = np.zeros((len(np.unique(y)), n_features))   Weight matrix 
        self.b = np.zeros(len(np.unique(y)))  # Bias vector 

        for class_label in np.unique(y): 

          # Set class labels,-1 for samples not belonging to the current class 
  binary_labels = np.where(y == class_label, 1, -1) 
             
  for _ in range(self.n_iters): 

                for idx, x_i in enumerate(X): 

                    # Compute the condition based on the hinge loss 
                    condition = binary_labels[idx] * (np.dot(x_i, 
self.w[class_label].T) - self.b[class_label]) >= 1 

                    if condition.all(): 
              # If the condition holds, update weights with regularization term 
                        self.w[class_label] = self.w[class_label] - self.lr * (2 
* self.lambda_param * self.w[class_label]) 

                    else: 
              # Else, update weights and bias to account for misclassifications 
                        self.w[class_label] = self.w[class_label] - self.lr * (2 
* self.lambda_param * self.w[class_label] - np.outer(binary_labels[idx], x_i))  
                        self.b[class_label] = self.b[class_label] - self.lr * 
binary_labels[idx] 

    def predict(self, X): 
        return np.argmax(np.dot(X, self.w.T) - self.b, axis=1) 



Ch. 4 Modeling
Sklearn - SVM, Random Forrest, Bayes
Generally 

Doc2Vec embeddings capture the semantic relationships within a document. In contrast, Support Vector Machines (SVM) and other methods like Naive 
Bayes or Random Forests use these features to classify the given data.  

Naive Bayes Classifier (sklearn.naive_bayes) 

The Naive Bayes classifier is a probabilistic machine learning model based on Bayes' theorem. In scikit-learn, the `sklearn.naive_bayes` module provides 
various Naive Bayes implementations, including Gaussian Naive Bayes for continuous data and Multinomial Naive Bayes for discrete data. Despite its 
"naive" assumption of independence between features, Naive Bayes classifiers are efficient and perform well in many real-world applications, particularly 
when dealing with high-dimensional data and large feature spaces. [2] 

Support Vector Machine (SVM) (sklearn.svm) 

Scikit-learn's SVM implementation, found in the `sklearn.svm` module, is a supervised learning algorithm for classification and regression tasks. SVMs aim to 
find an optimal hyperplane that separates data points of different classes in a high-dimensional space. The algorithm is effective in handling non-linear 
relationships through the use of kernel functions. [2] 

Random Forest (sklearn.ensemble.RandomForestClassifier) 

The Random Forest algorithm, available in scikit-learn's `sklearn.ensemble` module, is a learning method that builds a multitude of decision trees during 
training and outputs the mode of the classes for classification tasks of the individual trees. Random Forests are robust, versatile, and less prone to 
overfitting compared to individual decision trees. By combining the predictions from multiple trees, they provide a more accurate and stable model. 
Random Forests are commonly used for tasks such as classification, regression, and feature importance analysis in various domains.  [2]



Ch. 4 Modeling
Sklearn - SVM, Random Forrest, Bayes

# ----- Naive Bayes Classifier from sklearn ----- 
bayes_0 = GaussianNB() 
bayes_1 = GaussianNB() 
bayes_0.fit(train_x_0,train_y_0) 
bayes_1.fit(train_x_1,train_y_1) 

print("Naive Bayes Classifier") 
print(acc(test_y_0,bayes_0.predict(test_x_0))) 
print(acc(test_y_1,bayes_1.predict(test_x_1))) 

# -------- Random Forest from sklearn -------- 
forest_0 = RandomForestClassifier(n_estimators=100) 
forest_1 = RandomForestClassifier(n_estimators=100) 
forest_0.fit(train_x_0,train_y_0) 
forest_1.fit(train_x_1,train_y_1) 

print("Random Forest Classifier") 
print(acc(test_y_0,forest_0.predict(test_x_0))) 
print(acc(test_y_1,forest_1.predict(test_x_1))) 

# —— Support Vector Machine from sklearn ——-— 
svc_1 = SVC() 
svc_1.fit(train_x_1,train_y_1) 
svc_0 = SVC() 
svc_0.fit(train_x_0,train_y_0) 

print("Support Vector Machine") 
print(acc(test_y_1,svc_1.predict(test_x_1))) 
print(acc(test_y_0,svc_0.predict(test_x_0)))

from sklearn import utils 
from sklearn.naive_bayes import 
GaussianNB 
from sklearn.ensemble import 
RandomForestClassifier 
from sklearn.svm import SVC

To use the models by sklearn 
you simply import the wanted 
model trough the sklearn 
library by specifying which 
one. Cleaning and vectorizing 
the data has to be done 
beforehand. In the case of a 
supervised model such as an 
SVM you do have to have a 
label set as well with the real 
and correct classifications. 



Ch. 5 Evaluation
SVM vs Sklearns SVM vs other methods

0

25

50

75

100

PV-DBOW PV-DM

SVM SK SVM SK Bayes SK RF



Ch. 6 Summary
SVM vs SKlearns SVM
Regarding the performance, our own SVM and sklearns 
SVM preforms almost identical. Note that the other 
methods presented are included solely for the purpose of 
comparison and as a starting point. This is intended to 
provide a better understanding of the baseline 
performance of PV-DBOW and PV-DM. 

By definition Sklearns implementation should be more 
advanced, but that may not matter in this case. The 
performance of linear SVMs can depend on the 
characteristics of the data. If the data has distinct classes 
that are separable by a hyperplane, both implementations 
may produce comparable results. In summary the results 
depend on the characteristics of the data, since both SVM’s 
preform really well, the conclusion that the data is linearly 
separable can be drawn.  

Even though the produced results are very close, it is 
important to note that sklearns implementation of the SVM 
includes other beneficial aspects. It is more optimized, 
robust, and flexible. For example, one can train the model 
independently on a number of features, while our own 
implementation has to be changed if the number of 
features changes. I.e if one wishes to perform binary 
classification instead of three labels with the implemented 
SVM, the model needs to be modified. It is also worth 
noting that our model does not perform any kind of cross-
validation or grid search. 

In summary it is possible implementing your own 
classification model, such as a basic SVM. Although it might 
not be worth it for simple use cases. Although it is worth 
mentioning that you do have more control over the model 
and how it operates which could prove beneficial for more 
complex use cases. But for this case the available libraries 
are sufficient. 



Ch. 6 Summary
PV-DBOW vs PV-DM
Generally speaking, PV-DM should perform better for 
sentiment analysis since it not only considers 
relationships but also the context present. However, 
looking at the results, PV-DBOW achieves better 
overall performance for political bias sentiment 
analysis, in this case. This may depend on the news 
articles; if the political bias is rudimentary and doesn't 
contain any complex connections, PV-DBOW would 
perform better. That is, the bias is visible to the naked 
eye. With more complex and underlying opinions, PV-
DM should, in theory, perform better. Thus in this 
case, it seems that we benefited from having context 
independence. 

In summary, when choosing a document embedding 
method, it will always be beneficial choosing said 
method heuristically. Representing text can also be 
done in other manners, for example with a TF-IDF 
model. Which may prove beneficial for different use 
cases. 



Ch. 6 Summary
Answer to research questions
1. Can a support vector machine be implemented in a sufficient way without predefined libraries?  

Yes, a simple and sufficient SVM can be implemented without predefined libraries and tools. 

2. If so, how do the implemented SVM compare to the predefined one provided by the sklearn 
library?  

A simple SVM preforms quite similar to the predefined SVM provided by sklearn library for isolated use 
cases. If one is working with different datasets or multiple use cases you should use the predefined 
models since these are more robust, optimized and allows for a more efficient implementation. Although 
it is worth mentioning, with a SVM from scratch you have control over every single parameter and how the 
SVM handels the features and data. This could prove to be useful for specific use cases, it might also be 
easier to identify if anything goes wrong since you have a peek directly into the source code.  

3. How does one choose the right document embedding method for feature extraction? 

In this case, the PV-DBOW method yielded better results, although PV-DM, at first glance, should perform 
better in sentiment analysis. This discrepancy is likely due to the characteristics of the dataset, particularly 
how the political bias is presented. The conclusion drawn is that the choice of method needs to be made 
heuristically and is highly dependent on the dataset.



Ch. 7 Sources
Bibliography
[1] Najkov, Danilo, Detecting political bias in online articles using NLP and classification models, Medium, Jul 19 2022, 
https://medium.com/@danilo.najkov/detecting-political-bias-in-online-articles-using-nlp-and-classification-models-c1a40ec3989b,  
Collected: 2023-11-12 

[2] Umair, Muhammed, Implementing Naive Bayes, Random Forest, and SVM for Classification: A Tutorial with Code and Dataset, 
Medium, Mar 17 2023 
https://ai.plainenglish.io/implementing-naive-bayes-random-forest-and-svm-for-classification-a-tutorial-with-code-and-47f76d7361dc 
Collected: 2023—11-20 

[3] Luo, Shuyu, Loss Function: Support Vector Machine, Medium: Towards Data Science, Oct 15, 2018,  
https://towardsdatascience.com/optimization-loss-function-under-the-hood-part-iii-5dff33fa015d 
Collected: 2023-11-25 

[4] Tsang, Sik-Ho, Review: Distributed Representations of Sentences and Documents (Doc2Vec), Medium, Nov 12 2021,  
https://sh-tsang.medium.com/review-distributed-representations-of-sentences-and-documents-doc2vec-86ef911d4515 
Collected: 2023-12-05 

https://ai.plainenglish.io/implementing-naive-bayes-random-forest-and-svm-for-classification-a-tutorial-with-code-and-47f76d7361dc
https://towardsdatascience.com/optimization-loss-function-under-the-hood-part-iii-5dff33fa015d
https://sh-tsang.medium.com/review-distributed-representations-of-sentences-and-documents-doc2vec-86ef911d4515

